Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Lifetime Data Anal ; 29(2): 288-317, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2231774

RESUMEN

Multi-state models are used to describe how individuals transition through different states over time. The distribution of the time spent in different states, referred to as 'length of stay', is often of interest. Methods for estimating expected length of stay in a given state are well established. The focus of this paper is on the distribution of the time spent in different states conditional on the complete pathway taken through the states, which we call 'conditional length of stay'. This work is motivated by questions about length of stay in hospital wards and intensive care units among patients hospitalised due to Covid-19. Conditional length of stay estimates are useful as a way of summarising individuals' transitions through the multi-state model, and also as inputs to mathematical models used in planning hospital capacity requirements. We describe non-parametric methods for estimating conditional length of stay distributions in a multi-state model in the presence of censoring, including conditional expected length of stay (CELOS). Methods are described for an illness-death model and then for the more complex motivating example. The methods are assessed using a simulation study and shown to give unbiased estimates of CELOS, whereas naive estimates of CELOS based on empirical averages are biased in the presence of censoring. The methods are applied to estimate conditional length of stay distributions for individuals hospitalised due to Covid-19 in the UK, using data on 42,980 individuals hospitalised from March to July 2020 from the COVID19 Clinical Information Network.


Asunto(s)
COVID-19 , Humanos , Modelos Teóricos , Tiempo de Internación , Simulación por Computador , Unidades de Cuidados Intensivos
2.
Science ; 372(6538)2021 04 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1476375

RESUMEN

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Número Básico de Reproducción , COVID-19/epidemiología , COVID-19/mortalidad , Vacunas contra la COVID-19 , Niño , Preescolar , Control de Enfermedades Transmisibles , Inglaterra/epidemiología , Europa (Continente)/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Modelos Teóricos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad , Factores Socioeconómicos , Estados Unidos/epidemiología , Carga Viral , Adulto Joven
3.
BMJ ; 374: n2244, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1430185

RESUMEN

OBJECTIVES: To derive and validate risk prediction algorithms to estimate the risk of covid-19 related mortality and hospital admission in UK adults after one or two doses of covid-19 vaccination. DESIGN: Prospective, population based cohort study using the QResearch database linked to data on covid-19 vaccination, SARS-CoV-2 results, hospital admissions, systemic anticancer treatment, radiotherapy, and the national death and cancer registries. SETTINGS: Adults aged 19-100 years with one or two doses of covid-19 vaccination between 8 December 2020 and 15 June 2021. MAIN OUTCOME MEASURES: Primary outcome was covid-19 related death. Secondary outcome was covid-19 related hospital admission. Outcomes were assessed from 14 days after each vaccination dose. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance was evaluated in a separate validation cohort of general practices. RESULTS: Of 6 952 440 vaccinated patients in the derivation cohort, 5 150 310 (74.1%) had two vaccine doses. Of 2031 covid-19 deaths and 1929 covid-19 hospital admissions, 81 deaths (4.0%) and 71 admissions (3.7%) occurred 14 days or more after the second vaccine dose. The risk algorithms included age, sex, ethnic origin, deprivation, body mass index, a range of comorbidities, and SARS-CoV-2 infection rate. Incidence of covid-19 mortality increased with age and deprivation, male sex, and Indian and Pakistani ethnic origin. Cause specific hazard ratios were highest for patients with Down's syndrome (12.7-fold increase), kidney transplantation (8.1-fold), sickle cell disease (7.7-fold), care home residency (4.1-fold), chemotherapy (4.3-fold), HIV/AIDS (3.3-fold), liver cirrhosis (3.0-fold), neurological conditions (2.6-fold), recent bone marrow transplantation or a solid organ transplantation ever (2.5-fold), dementia (2.2-fold), and Parkinson's disease (2.2-fold). Other conditions with increased risk (ranging from 1.2-fold to 2.0-fold increases) included chronic kidney disease, blood cancer, epilepsy, chronic obstructive pulmonary disease, coronary heart disease, stroke, atrial fibrillation, heart failure, thromboembolism, peripheral vascular disease, and type 2 diabetes. A similar pattern of associations was seen for covid-19 related hospital admissions. No evidence indicated that associations differed after the second dose, although absolute risks were reduced. The risk algorithm explained 74.1% (95% confidence interval 71.1% to 77.0%) of the variation in time to covid-19 death in the validation cohort. Discrimination was high, with a D statistic of 3.46 (95% confidence interval 3.19 to 3.73) and C statistic of 92.5. Performance was similar after each vaccine dose. In the top 5% of patients with the highest predicted covid-19 mortality risk, sensitivity for identifying covid-19 deaths within 70 days was 78.7%. CONCLUSION: This population based risk algorithm performed well showing high levels of discrimination for identifying those patients at highest risk of covid-19 related death and hospital admission after vaccination.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/mortalidad , Hospitalización/estadística & datos numéricos , Vacunación/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Vacuna BNT162 , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , ChAdOx1 nCoV-19 , Comorbilidad , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Medición de Riesgo , SARS-CoV-2 , Reino Unido/epidemiología
4.
Lancet Respir Med ; 9(7): 773-785, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1337040

RESUMEN

BACKGROUND: Mortality rates in hospitalised patients with COVID-19 in the UK appeared to decline during the first wave of the pandemic. We aimed to quantify potential drivers of this change and identify groups of patients who remain at high risk of dying in hospital. METHODS: In this multicentre prospective observational cohort study, the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK recruited a prospective cohort of patients with COVID-19 admitted to 247 acute hospitals in England, Scotland, and Wales during the first wave of the pandemic (between March 9 and Aug 2, 2020). We included all patients aged 18 years and older with clinical signs and symptoms of COVID-19 or confirmed COVID-19 (by RT-PCR test) from assumed community-acquired infection. We did a three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and in-hospital mortality, adjusting for confounders (demographics, comorbidities, and severity of illness) and quantifying potential mediators (level of respiratory support and steroid treatment). The primary outcome was weekly in-hospital mortality at 28 days, defined as the proportion of patients who had died within 28 days of admission of all patients admitted in the observed week, and it was assessed in all patients with an outcome. This study is registered with the ISRCTN Registry, ISRCTN66726260. FINDINGS: Between March 9, and Aug 2, 2020, we recruited 80 713 patients, of whom 63 972 were eligible and included in the study. Unadjusted weekly in-hospital mortality declined from 32·3% (95% CI 31·8-32·7) in March 9 to April 26, 2020, to 16·4% (15·0-17·8) in June 15 to Aug 2, 2020. Reductions in mortality were observed in all age groups, in all ethnic groups, for both sexes, and in patients with and without comorbidities. After adjustment, there was a 32% reduction in the risk of mortality per 7-week period (odds ratio [OR] 0·68 [95% CI 0·65-0·71]). The higher proportions of patients with severe disease and comorbidities earlier in the first wave (March and April) than in June and July accounted for 10·2% of this reduction. The use of respiratory support changed during the first wave, with gradually increased use of non-invasive ventilation over the first wave. Changes in respiratory support and use of steroids accounted for 22·2%, OR 0·95 (0·94-0·95) of the reduction in in-hospital mortality. INTERPRETATION: The reduction in in-hospital mortality in patients with COVID-19 during the first wave in the UK was partly accounted for by changes in the case-mix and illness severity. A significant reduction in in-hospital mortality was associated with differences in respiratory support and critical care use, which could partly reflect accrual of clinical knowledge. The remaining improvement in in-hospital mortality is not explained by these factors, and could be associated with changes in community behaviour, inoculum dose, and hospital capacity strain. FUNDING: National Institute for Health Research and the Medical Research Council.


Asunto(s)
COVID-19/mortalidad , Mortalidad Hospitalaria , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Protocolos Clínicos , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reino Unido/epidemiología , Organización Mundial de la Salud
5.
BMC Health Serv Res ; 21(1): 566, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1262505

RESUMEN

BACKGROUND: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient's "bed pathway" - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. METHODS: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. RESULTS: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. CONCLUSIONS: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19. TRIAL REGISTRATION: The ISARIC WHO CCP-UK study ISRCTN66726260 was retrospectively registered on 21/04/2020 and designated an Urgent Public Health Research Study by NIHR.


Asunto(s)
Ocupación de Camas , COVID-19 , Inglaterra , Humanos , Tiempo de Internación , SARS-CoV-2
6.
Science ; 371(6538):149-149, 2021.
Artículo en Inglés | Academic Search Complete | ID: covidwho-1181922

RESUMEN

The article discusses about the novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused COVID-19. One of these variant of concern was B.1.1.7 which was first detected in southeast England and spread to become the dominant lineage in the United Kingdom in just a few months.

7.
Nature ; 593(7858): 270-274, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1135672

RESUMEN

SARS-CoV-2 lineage B.1.1.7, a variant that was first detected in the UK in September 20201, has spread to multiple countries worldwide. Several studies have established that B.1.1.7 is more transmissible than pre-existing variants, but have not identified whether it leads to any change in disease severity2. Here we analyse a dataset that links 2,245,263 positive SARS-CoV-2 community tests and 17,452 deaths associated with COVID-19 in England from 1 November 2020 to 14 February 2021. For 1,146,534 (51%) of these tests, the presence or absence of B.1.1.7 can be identified because mutations in this lineage prevent PCR amplification of the spike (S) gene target (known as S gene target failure (SGTF)1). On the basis of 4,945 deaths with known SGTF status, we estimate that the hazard of death associated with SGTF is 55% (95% confidence interval, 39-72%) higher than in cases without SGTF after adjustment for age, sex, ethnicity, deprivation, residence in a care home, the local authority of residence and test date. This corresponds to the absolute risk of death for a 55-69-year-old man increasing from 0.6% to 0.9% (95% confidence interval, 0.8-1.0%) within 28 days of a positive test in the community. Correcting for misclassification of SGTF and missingness in SGTF status, we estimate that the hazard of death associated with B.1.1.7 is 61% (42-82%) higher than with pre-existing variants. Our analysis suggests that B.1.1.7 is not only more transmissible than pre-existing SARS-CoV-2 variants, but may also cause more severe illness.


Asunto(s)
COVID-19/mortalidad , COVID-19/virología , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Inglaterra/epidemiología , Etnicidad , Evolución Molecular , Femenino , Hogares para Ancianos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Medición de Riesgo , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Supervivencia , Factores de Tiempo , Adulto Joven
8.
BMJ ; 371: m3731, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: covidwho-883340

RESUMEN

OBJECTIVE: To derive and validate a risk prediction algorithm to estimate hospital admission and mortality outcomes from coronavirus disease 2019 (covid-19) in adults. DESIGN: Population based cohort study. SETTING AND PARTICIPANTS: QResearch database, comprising 1205 general practices in England with linkage to covid-19 test results, Hospital Episode Statistics, and death registry data. 6.08 million adults aged 19-100 years were included in the derivation dataset and 2.17 million in the validation dataset. The derivation and first validation cohort period was 24 January 2020 to 30 April 2020. The second temporal validation cohort covered the period 1 May 2020 to 30 June 2020. MAIN OUTCOME MEASURES: The primary outcome was time to death from covid-19, defined as death due to confirmed or suspected covid-19 as per the death certification or death occurring in a person with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the period 24 January to 30 April 2020. The secondary outcome was time to hospital admission with confirmed SARS-CoV-2 infection. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance, including measures of discrimination and calibration, was evaluated in each validation time period. RESULTS: 4384 deaths from covid-19 occurred in the derivation cohort during follow-up and 1722 in the first validation cohort period and 621 in the second validation cohort period. The final risk algorithms included age, ethnicity, deprivation, body mass index, and a range of comorbidities. The algorithm had good calibration in the first validation cohort. For deaths from covid-19 in men, it explained 73.1% (95% confidence interval 71.9% to 74.3%) of the variation in time to death (R2); the D statistic was 3.37 (95% confidence interval 3.27 to 3.47), and Harrell's C was 0.928 (0.919 to 0.938). Similar results were obtained for women, for both outcomes, and in both time periods. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths within 97 days was 75.7%. People in the top 20% of predicted risk of death accounted for 94% of all deaths from covid-19. CONCLUSION: The QCOVID population based risk algorithm performed well, showing very high levels of discrimination for deaths and hospital admissions due to covid-19. The absolute risks presented, however, will change over time in line with the prevailing SARS-C0V-2 infection rate and the extent of social distancing measures in place, so they should be interpreted with caution. The model can be recalibrated for different time periods, however, and has the potential to be dynamically updated as the pandemic evolves.


Asunto(s)
Algoritmos , Reglas de Decisión Clínica , Infecciones por Coronavirus , Hospitalización/estadística & datos numéricos , Mortalidad , Pandemias , Neumonía Viral , Medición de Riesgo , Adulto , Anciano de 80 o más Años , Betacoronavirus/aislamiento & purificación , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/terapia , Bases de Datos Factuales/estadística & datos numéricos , Inglaterra/epidemiología , Femenino , Humanos , Masculino , Neumonía Viral/mortalidad , Neumonía Viral/terapia , Pronóstico , Reproducibilidad de los Resultados , Medición de Riesgo/métodos , Medición de Riesgo/normas , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA